Skip to contents

Make to maps Stegomyia Indices

The origin of data

The “Programa Estatal de Vigilancia Entomología y Control Integral de Enfermedades Trasmitidas por Vector” carries out various activities for disease prevention, which are guided by surveillance activities that provide entomological risk indices, which is why a Package rStegomyia will be made to calculate the indices of entomological risk in an automatic and timely manner for decision making.

All activities are captured daily on a platform, where it is possible to download the data for reporting and analysis. In the case of Surveillance by Ovitrampa (VO), the platform calculates the risk indices but for the Entomological Study (EE) activity it calculates them per block worked, these indices are required per risk location on a weekly or daily basis.

It is necessary to be able to calculate epidemiological week (SE) risk indices by type of study, risk locality and by epidemiological week in an automated manner.

The EE activity evaluates a sample before (Encuesta) and after (Verificacion) of the comprehensive control activities to determine the entomological risk that exists in a large area to be worked on (Sectors or Locality) and if it requires reinforcing control and prevention actions.

library(rStegomyia)
#> Loading required package: tidyverse
#> ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
#>  dplyr     1.1.4      readr     2.1.5
#>  forcats   1.0.0      stringr   1.5.1
#>  ggplot2   3.5.1      tibble    3.2.1
#>  lubridate 1.9.4      tidyr     1.3.1
#>  purrr     1.0.4     
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#>  dplyr::filter() masks stats::filter()
#>  dplyr::lag()    masks stats::lag()
#>  Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
#> Loading required package: ggmap
#> 
#>  Google's Terms of Service: <https://mapsplatform.google.com>
#>   Stadia Maps' Terms of Service: <https://stadiamaps.com/terms-of-service/>
#>   OpenStreetMap's Tile Usage Policy: <https://operations.osmfoundation.org/policies/tiles/>
#>  Please cite ggmap if you use it! Use `citation("ggmap")` for details.
#> Loading required package: gganimate
#> 
#> Loading required package: gifski
#> 
#> Loading required package: transformr
#> 
#> Loading required package: htmltools
#> 
#> Loading required package: htmlwidgets
#> 
#> Loading required package: leaflet
#> 
#> Loading required package: leaflet.extras
#> 
#> Loading required package: raster
#> 
#> Loading required package: sp
#> 
#> 
#> Attaching package: 'raster'
#> 
#> 
#> The following object is masked from 'package:dplyr':
#> 
#>     select
#> 
#> 
#> Loading required package: sf
#> 
#> Linking to GEOS 3.12.1, GDAL 3.8.4, PROJ 9.4.0; sf_use_s2() is TRUE
#> 
#> 
#> Attaching package: 'sf'
#> 
#> 
#> The following object is masked from 'package:transformr':
#> 
#>     st_normalize

Load raw data

Download the file .txt of Entomology Study from plataform “Vigilancia Entomológica y Control Integral del Vector”. Select the variables for your analysis and load the data of the Entomology Study of file .txt to make dataframe. If the variables are not specified, the variables that are going to be selected by default are: “Tipo de Estudio”, “Jurisdiccion”, “Localidad”, “Sector”, “Fecha de Inicio”, “Semana Epidemiologica”, “Casas Revisadas”, “Casas Positivas”, “Total de Recipientes con Agua”, “Total de Recipientes Positivos”.

path_raw_data <- system.file("extdata",
                             "estudio_entomologico1.txt",
                             package = "rStegomyia"
                             )

df_lrd <- load_raw_data(path_raw_data)
#> Rows: 42 Columns: 121
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: "\t"
#> chr  (12): Tipo de Estudio, Entidad, Jurisdiccion, Municipio, Localidad, Man...
#> dbl (109): clave, Sector, Altitud (msnm), No. de Habitantes, Semana Epidemio...
#> 
#>  Use `spec()` to retrieve the full column specification for this data.
#>  Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> Rows: 42 Columns: 10
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: "\t"
#> chr (4): Tipo de Estudio, Jurisdiccion, Localidad, Fecha de Inicio
#> dbl (6): Sector, Semana Epidemiologica, Casas Revisadas, Casas Positivas, To...
#> 
#>  Use `spec()` to retrieve the full column specification for this data.
#>  Specify the column types or set `show_col_types = FALSE` to quiet this message.

head(df_lrd)
#>   Tipo_de_Estudio Clave_Jurisdiccion Jurisdiccion Clave_Localidad  Localidad
#> 1    Verificacion               2601   Hermosillo            0001 HERMOSILLO
#> 2        Encuesta               2601   Hermosillo            0001 HERMOSILLO
#> 3        Encuesta               2601   Hermosillo            0001 HERMOSILLO
#> 4    Verificacion               2601   Hermosillo            0001 HERMOSILLO
#> 5        Encuesta               2601   Hermosillo            0001 HERMOSILLO
#> 6        Encuesta               2601   Hermosillo            0001 HERMOSILLO
#>   Sector Fecha_de_Inicio Semana_Epidemiologica Casas_Revisadas Casas_Positivas
#> 1    569      07/01/2021                     1             123               0
#> 2    569      04/01/2021                     1             123              24
#> 3    401      07/01/2021                     1              69               6
#> 4    401      07/01/2021                     1              66               3
#> 5    400      07/01/2021                     1             126               9
#> 6    403      07/01/2021                     1             153               9
#>   Total_de_Recipientes_con_Agua Total_de_Recipientes_Positivos
#> 1                           375                              0
#> 2                          1176                             45
#> 3                           141                              6
#> 4                           156                              3
#> 5                           399                              9
#> 6                           414                              9

Clean raw data

Next, clean and give format to the dataframe´s variables of the Entomology Study

path_of_example = c(system.file("extdata",
                                 "qr.csv",
                                 package = "rStegomyia"
                                 )
                    )
 df_crd <- clean_raw_data(df_lrd,
               path_out = path_of_example
               )
#> Warning: The following named parsers don't match the column names:
#> Clave_Municipio, Municipio

 head(df_crd)
#>   Tipo_de_Estudio Clave_Jurisdiccion Jurisdiccion Clave_Localidad  Localidad
#> 1    Verificacion               2601   Hermosillo            0001 HERMOSILLO
#> 2        Encuesta               2601   Hermosillo            0001 HERMOSILLO
#> 3        Encuesta               2601   Hermosillo            0001 HERMOSILLO
#> 4    Verificacion               2601   Hermosillo            0001 HERMOSILLO
#> 5        Encuesta               2601   Hermosillo            0001 HERMOSILLO
#> 6        Encuesta               2601   Hermosillo            0001 HERMOSILLO
#>   Sector Fecha_de_Inicio Semana_Epidemiologica Casas_Revisadas Casas_Positivas
#> 1    569      2021-01-07                     1             123               0
#> 2    569      2021-01-04                     1             123              24
#> 3    401      2021-01-07                     1              69               6
#> 4    401      2021-01-07                     1              66               3
#> 5    400      2021-01-07                     1             126               9
#> 6    403      2021-01-07                     1             153               9
#>   Total_de_Recipientes_con_Agua Total_de_Recipientes_Positivos
#> 1                           375                              0
#> 2                          1176                             45
#> 3                           141                              6
#> 4                           156                              3
#> 5                           399                              9
#> 6                           414                              9

Calcul Stegomyia indices by type of study and geographic area

Select study type and sectors to analize the dataframe of the Entomology Study. If the study type is not specified, “Verificacion” is going to be selected by default. The function will calculate Stegomyia Indices and Index Status by Sector. Use that data to make a new dataframe

path_of_example2 = c(system.file("extdata",
                                 "statusindicesector.csv",
                                 package = "rStegomyia"
                                 )
                    )


sectors <-c(df_crd$Sector)

df_sitsgis <- get_stegomyia_indices_by_type_of_study_and_geo_is(df_crd,
                                                            var= c(sectors),
                                                            path_out = path_of_example2
                                                            )
#> Warning in get_stegomyia_indices_by_type_of_study_and_geo_is(df_crd, var =
#> c(sectors), : Casa_Revisada with 0
df_sitsgis
#>    Sector        HI       CI        BI index_status_HI index_status_CI
#> 1     390  0.000000 0.000000  0.000000          Optimo          Optimo
#> 2     400  9.803922 4.166667  9.803922      Emergencia          Alarma
#> 3     401  4.545455 1.923077  4.545455          Alarma           Bueno
#> 4     403  7.246377 3.157895  8.695652      Emergencia          Alarma
#> 5     444  0.000000 0.000000  0.000000          Optimo          Optimo
#> 6     500  0.000000 0.000000  0.000000          Optimo          Optimo
#> 7     513  0.000000 0.000000  0.000000          Optimo          Optimo
#> 8     540 12.000000 5.357143 12.000000      Emergencia      Emergencia
#> 9     569  0.000000 0.000000  0.000000          Optimo          Optimo
#> 10    824  0.000000 0.000000  0.000000          Optimo          Optimo
#> 11    835  0.000000 0.000000  0.000000          Optimo          Optimo
#> 12    848  4.545455 1.923077  4.545455          Alarma           Bueno
#> 13    857  0.000000 0.000000  0.000000          Optimo          Optimo
#> 14    858 12.000000 5.357143 12.000000      Emergencia      Emergencia
#> 15    862  9.803922 4.166667  9.803922      Emergencia          Alarma
#> 16    869  7.246377 3.157895  8.695652      Emergencia          Alarma
#> 17    921  0.000000 0.000000  0.000000          Optimo          Optimo
#> 18    927  0.000000 0.000000  0.000000          Optimo          Optimo
#> 19    928  0.000000 0.000000  0.000000          Optimo          Optimo
#> 20   1248  0.000000 0.000000  0.000000          Optimo          Optimo
#> 21   1305  0.000000 0.000000  0.000000          Optimo          Optimo
#>    index_status_BI
#> 1           Optimo
#> 2       Emergencia
#> 3           Alarma
#> 4       Emergencia
#> 5           Optimo
#> 6           Optimo
#> 7           Optimo
#> 8       Emergencia
#> 9           Optimo
#> 10          Optimo
#> 11          Optimo
#> 12          Alarma
#> 13          Optimo
#> 14      Emergencia
#> 15      Emergencia
#> 16      Emergencia
#> 17          Optimo
#> 18          Optimo
#> 19          Optimo
#> 20          Optimo
#> 21          Optimo

Make the maps with status of Stegomyia indices

Use the new dataframe created to make maps for Stegomia Index Status with the sectors of Locality “Hermosillo”


list_of_maps <-get_maps_stegomyia_indices(df_sitsgis)
#> Warning in CPL_transform(x, crs, aoi, pipeline, reverse, desired_accuracy, :
#> GDAL Error 1: PROJ: defmodel: Cannot open nz_linz_nzgd2000-20180701.json
#> Warning in CPL_transform(x, crs, aoi, pipeline, reverse, desired_accuracy, :
#> GDAL Error 1: PROJ: pipeline: Pipeline: Bad step definition: proj=defmodel
#> (File not found or invalid)
#> Warning in CPL_transform(x, crs, aoi, pipeline, reverse, desired_accuracy, :
#> GDAL Error 1: PROJ: defmodel: Cannot open nz_linz_nzgd2000-20180701.json
#> Warning in CPL_transform(x, crs, aoi, pipeline, reverse, desired_accuracy, :
#> GDAL Error 1: PROJ: pipeline: Pipeline: Bad step definition: proj=defmodel
#> (File not found or invalid)
#> Warning in CPL_transform(x, crs, aoi, pipeline, reverse, desired_accuracy, :
#> GDAL Error 1: PROJ: defmodel: Cannot open nz_linz_nzgd2000-20180701.json
#> Warning in CPL_transform(x, crs, aoi, pipeline, reverse, desired_accuracy, :
#> GDAL Error 1: PROJ: pipeline: Pipeline: Bad step definition: inv (File not
#> found or invalid)
#> Warning in CPL_transform(x, crs, aoi, pipeline, reverse, desired_accuracy, :
#> GDAL Error 1: PROJ: defmodel: Cannot open nz_linz_nzgd2000-20180701.json
#> Warning in CPL_transform(x, crs, aoi, pipeline, reverse, desired_accuracy, :
#> GDAL Error 1: PROJ: pipeline: Pipeline: Bad step definition: inv (File not
#> found or invalid)

list_of_maps
#> [[1]]

#> 
#> [[2]]

#> 
#> [[3]]